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Nordheim's theory for purely random alloys and Hall's extension for nonrandom alloys in terms of 
Cowley parameters are further developed and applied to substitutional binary systems. The theory is valid 
for any degree of order, excepting perfect superlattices. Purely random alloys and nonrandom alloys are 
shown to possess certain analogies with normal and umklapp processes, respectively. By accounting for those 
Fermi volume changes with concentration arising when the two atoms are different in size and valence, it is 
possible to explain the experimental non-parabolic curves of resistivity versus concentration. Applications 
are made to the cases of the Cu-Au and the Cu-Ni systems rapidly quenched from a high temperature. 
Results of a limited study of the data for the slowly annealed Cu-Au system are presented, but more experi
mental measurements of the Cowley parameters are required to test the theory. A few new relations obeyed 
by the Cowley parameters are given. The work reported here meets certain independent checks carried out 
by Christy in unpublished calculations on ordering energy. 

1. INTRODUCTION 

VERY little work has been reported on the quantum 
theory of the residual resistivity of nondilute dis

ordered alloys. Here the theory of Nordheim1 for purely 
random alloys and Hall's2 extension for nonrandom 
alloys are further developed and applied to substitu
tional binary alloys. In order to explain the nonparabolic 
curves of resistivity versus concentration for nearly 
random (rapidly quenched) alloys, it is essential that 
changes in the volume enclosed by the Fermi surface be 
taken into account. Fermi volume changes with concen
tration considered in this paper are of two types: (1) that 
resulting indirectly from the change in the lattice 
parameter as the stoichiometric proportion of two ions 
of appreciably different size is varied, and (2) that 
arising directly from the change, with concentration, in 
the effective number of conduction electrons when the 
two ions possess different valences. Most of the applica
tions reported here are for the nearly random case, which 
turns out to be somewhat analogous to normal processes 
in thermal resistivity. The theory of nonrandom (slowly 
annealed) alloys, which is shown to be analogous to 
umklapp processes, is applied to the Cu-Au system. The 
latter application is somewhat limited at the present by 
lack of knowledge of the Cowley order parameters3; to 
proceed further in testing the theory more experimental 
measurements of the Cowley parameters and knowledge 
of the geometrical interrelationships between the various 
Cowley parameters are required. 

In 1931, Nordheim1 used perturbation methods to 
develop a theory for purely random substitutional alloys 
which predicts a parabolic dependence of the resistivity 
on the concentration of one component of a binary alloy. 
This prediction does not agree with experiment, and 
various qualitative explanations4,5 have been suggested 

* Work supported by the National Science Foundation. 
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3 J. M. Cowley, Phys. Rev. 77, 669 (1950). 
4 H . Jones, in Handbuch der Physik, edited by S. Fltigge 
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to explain the discrepancy. Nordheim's theoretical 
model is one in which each atom is represented by a 
potential which vanishes at the cell boundary; the 
total potential representing the disorder is treated as a 
perturbation. The associated matrix elements, which 
have many contributing terms, are then calculated 
approximately by discarding many terms without 
rigorous justification. Moreover, considerations (1) and 
(2) above are completely ignored. 

In 1959, Hall2 considered a more general model in 
which each atom is permitted to possess a potential 
"tail" extending over many cells and he introduced the 
Cowley order parameters into the formalism in a manner 
similar to that used in Flinn's treatment6 of ordering 
energy. Hall reported that the contributions to the 
matrix elements discarded by Nordheim turn out to be 
identically zero for a purely random alloy but constitute 
the order dependent contributions in the nonrandom 
case. Hall also found a parabolic resistivity curve for the 
purely random case, because he, like Nordheim, failed 
to consider items (1) and (2) above. Furthermore, both 
Nordheim and Hall failed to notice that in the non-
random case the k, k' matrix element depends, in 
general, upon the direction of k with respect to the 
crystal as well as upon the angle between k and k'. The 
first of these dependences gives rise to a problem similar 
to that encountered in umklapp processes.7 This point 
will be discussed in detail in Sec. 2. 

Criticisms similar to those outlined above can be 
directed toward the work of Dyhne, Matysina, and 
Smirnov8, who developed a formalism without testing 
it in detail with an application. 

The three main tasks undertaken in this paper are: 
(A) to develop a method for handling the features, 
similar to those in umklapp processes, which are en
countered in the nonrandom case; (B) to demonstrate 
in the applications the necessity, and success, of ac-

6 P. A. Flinn, Phys. Rev. 104, 350 (1956). 
7 H. Jones, Ref. 4, p. 245. 
8 A. M. Dykhne, Z. A. Matysina, and A. A. Smirnov, Fiz. 

Metal, i Metalloved. 5, (2), 220 (1957). 
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counting for the changes of the Fermi volume arising 
from changes in the lattice parameter and the changes 
in the effective number of conduction electrons; and 
(C) to point out what experimental information is 
needed, and to indicate where further knowledge of the 
interrelations between the various Cowley parameters 
would be helpful. 

Section 2 on theory treats the potentials to be used, 
introduces the Cowley parameters, and presents a calcu
lation of the relaxation time; Sec. 3 applies this theory 
to the nearly random case; Sec. 4 reports limited appli
cations to the nonrandom case, particularly for the 
Cu-Au system; finally, Sec. 5 summarizes the results and 
discusses the need for further experimental and theo
retical work. 

2. THEORY 

1. Theoretical Model and Cowley Paramete r s 

Consider a binary disordered lattice of A and B atoms 
placed on a Bravais T lattice. Let the rigid potential 
associated with an A atom be UA(X) and that associated 
with a B atom be UB(T), where both potentials do not 
necessarily vanish outside the unit cell. The total 
potential U(r) is given by 

U(r)= f UA(T-*)+ t UB(T-*). (2.1) 
A atoms B atoms 

This total potential can be decomposed into a more 
workable form by introducing a function CT defined at 
the lattice points as follows: 

CT—mB, if an A atom is at t 

— —MA , if a B atom is at x, 

where mi is the concentration of the ith component. 
Further, let an average potential be defined by 

^ i ( r ) ^ Z [ ^ ^ ( r - T ) + m 5 ^ ( r - T ) ] , (2.2) / ( k , k » 

which is periodic and produces no resistivity; let a 
"difference potential" be defined by 

U2(r)^tcTAU(r-x), AU(t)^UA(r)-UB(t), (2.3) 
T 

which describes the disorder. The various potentials 
are simply related by 

tf(r)=tfi(r)+*72(r). (2.4) 

The theoretical model is constructed in two steps: 
In the first step, a crystal of infinite extent is imagined 
to exist with the periodic potential U\. Periodic bound
ary conditions are applied to a volume Nti described 
by the three vectors iVi^i, ^2*2, and Ns*z, where N 
equals NiNzN* and 0 equals | *i* (T2 X *«) |. In applying 
periodic boundary conditions, it is convenient to intro
duce the infinite set of vectors n defined by 

w<=0, =fcl,db2,---. 

I t then follows that 

and U\ leads to Bloch functions 

^k(r) = «k(r)expik-r , 

e x p i k - n = l , «k(H-'0= :Wk(r), 
(2.5) 

where ? is any Bravais lattice vector. I t is imagined 
that these exact Bloch functions are known. In the 
second step of the construction, the model is completed 
with the addition of the potential U2, which is assumed 
to cause only a small perturbation on the Bloch func
tions. This potential is the source of the residual resis
tivity. By insisting that CT+n equals CT, it is insured 
that periodic boundary conditions are also applied to 
the perturbed crystal. 

I t is then possible to show (see Appendix A) for 
potentials extending outside the unit cell and for general 
Bloch functions that the matrix element of U2 defined by 

i l f ( k , k ' ) = — f fv*(T)U2(r)Mr)d'r, (2.6) 
NQJm 

vanishes if k equals k' (first-order perturbation results) 
and is otherwise given by 

M(k,kO = — E CT / i ^* ( r )At f ( r -T) iMr)dV. 

In the same manner it is also shown that 

| j f ( k , k ' ) ! 2 = Z « r / ( k , k > ) , 

aT = J2 Cr'Cr+r'/NmAfflB, 

-- NntAtnB 
\NQ 

^k<*(r)^k(r)AZ7(r-<0<2V 

(2.7) 

(2.8) 

. (2.9) 

The Af Cowley order parameters as defined by Eq. 
(2.8) are not all independent, but so far no one has 
reported all the interrelationships. The following prop
erties are easily established9: 

N 
aT — a-.T, « o = l , 12ar — 0, «T+n = aT , (2.10a) 

1 > Q : T > 

1 , 0<mA< 
mB 

1 , 0<mB<h 
mA 

(2.10b) 

a ^ o ^ — l/(xV— 1), random case. (2.10c) 
9 G. L. Hall and D. O. Christy (to be published). 
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It should be noted that aT is a discrete autocorrelation 
function which describes the arrangement of atoms and 
is independent of the functional form of the potentials. 
The quantity / , also expressible as an autocorrelation 
function, depends only on the potentials and not the 
arrangement of atoms. 

Equation (2.7) is equivalent to Jones'4 Eq. (25.5) in 
his discussion of the Nordheim1 theory. In the limit as 
N approaches infinity all aT for purely random solutions 
vanish except CLQ. This proves2 that the second sum in 
Jones' Eq. (25.5) is identically zero for random solutions 
even if rigid atomic potentials extending over more than 
one cell and Bloch functions are used. In nonrandom 
solutions, first- and higher-order neighbors contribute 
to the matrix elements in (2.7). 

It is of importance to note that care has to be exer
cised in the use of (2.7) for perfectly ordered crystals. 
Although the ar can describe perfectly ordered as well 
as disordered crystals, the finite sum in (2.7) is identi
cally zero for many k, k' pairs if aT represents a perfect 
superlattice. In the sequel it will be pointed out where 
it is assumed that no perfect superlattice exists. 

When Bloch functions are considered, (2.9) may be 
rewritten in an alternate form which is more convenient 
for calculations made later in this paper; this alternate 
form is 

/(k,k/,^) = expp(k-k ,)-'u]ff(k,k /), (2.11) 
where 

HQs>)s!)=NmAinB - f 
mJN 

uk>*(r)uk(t) 

Xexp[i(k-k')-r]A£7(r)^ (2.12) 

2. Calculation of the Relaxation Time 

The general theory of a relaxation time P(k) for 
electrons excited by thermal or structural distortions 
of a periodic lattice is well known. In a review article, 
Jones10 derives the expression 

TQL) 

m r r 
= — / P&k ' ) 1 

ST*JNV L 
(2.13) 

relating the relaxation time T to the probability per unit 
time P of an electron being excited from the Bloch 
state k to the state k', where x is a function related 
to the general distribution function of the Boltzmann 
equation. For a large class of phenomena, it is as
sumed that the scattering is elastic and that the 
energy E of the electron depends only on the magni
tude of the wave vector, 

£2 

E = - | k | » , 
2/x 

where ju is the effective electronic mass. Further approxi
mations, which are usually necessary, depend upon the 

10 H. Jones, Ref. 4, p. 237. 

nature of the phenomenon under study. Interest here is 
centered on the residual resistivity of disordered alloys, 
a structural effect, but it is instructive to draw an 
analogy between this and thermal resistivity. The main 
justification for this analogy is for the nonrandom case 
where P(k,k') will be approximated by an averaging 
process similar to that used for umklapp processes. 

Purely Random Case Similar to Normal Processes 

In normal processes it is assumed that the solid is 
isotropic, which leads to three results: (i) P(k,k') be
comes a function of the magnitudes of k and k' and the 
relative direction between them, and is independent of 
the current; (ii) x(k) becomes a function of the magni
tude of k and the angle between k and the direction of 
the current; and (iii) P(k) depends only on the magni
tude of k. The probability P(k,k') is then simply related 
to the modulus squared of the scattering matrix by 

2TTUL 
P(k,k') = — \ M ( W \ * b ( k ' - k ) . 

h*k 
(2.14) 

For this type of thermal resistivity, Af(k,k') is the 
matrix element of an instantaneous configuration of 
vibration, and it is understood, although the notation 
does not indicate it, that an average over all possible 
configurations is to be performed. In normal processes, 
M"(k,k') cannot depend upon the relation of k or k' to a 
crystallographic direction. 

Although a purely random array of atomic potentials 
placed on a Bravais lattice does not yield an isotropic 
total potential, it still follows under certain conditions 
that the associated matrix elements are similar to those 
for normal processes. Sufficient conditions for a signifi
cant correspondence are that AU(r) and u^{x) be 
spherically symmetric. Under these conditions it follows 
from (2.7) and (2.10) that in the limit of large N one 
has for the random case 

|ilf(k,k')|2=/(k )k',0), (2.15) 

where /(k,k',0) is a function of the magnitudes of k and 
k' and of the relative angle between them. With these 
restrictions the relaxation time for the purely random 
case becomes 

1 fiNSl 

T iwWko 1 /(k.k',0) 
r k'-Sn 

1 \dS', (2.16) 

where the integration is over all k' lying on the spherical 
Fermi surface denoted by ko and where z is a unit vector 
in the direction of the electric field. Equation (2.16) 
will be evaluated for specific potentials after the analog 
of (2.16) has been developed for the nonrandom case. 

Nonrandom Contributions Similar to Umklapp Processes 

In umklapp processes the transition probability is 
dependent on the direction of k relative to the crystallo-
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graphic axes of the crystal; accordingly, the crystal can 
no longer be assumed to be isotropic. The usual method 
of handling the associated difficulty7 in (2.13) is to 
average the transition probability over all possible 
directions of k. Similarly for a disordered alloy the 
transition probability is dependent on the relative 
directions of k, k', and T. A solution to this problem is 
obtained in the same manner as used for U processes. 
Thus, for a disordered alloy, (2.13) may be written 

= — / <P(k,kO>J 1 - — \Pk', (2.17) 
1 Nti 

T 57T J NQ 

where (P(k,k'))av is the average of the transition prob
ability over all possible directions of k. Note that this 
averaging procedure need not be applied to the random 
case. Equations (2.7), (2.14), and (2.17) give for the 
relaxation time 

1 uNti 

T 4<ir2h*k0 

[/(0)+EWM], 
where 

(2.18) 

(2.19) /(0) = J/(k,k',0)[l--^]dS', 

7 W = y < / ( k , k ' , T ) ) . ^ l - ^ ] d S ' , (2.20) 

and where Eq. (2.16) has been used for the random case, 
that is, for T = 0 . The only restrictions on (2.18) are that 
both AU and u* must be spherically symmetric. 

Relaxation Time for the Yukawa Potential 

In order to proceed further with Eq. (2.18), it is 
necessary to specify the potentials UA and UB and, 
hence, AU. In most of the applications reported here 
the Yukawa potentials 

Ui(r) = Zie2(4ireor)-1 exp(—q%r) , i—A,B, 

will be used with q± equal to qB. With this simplification 
AZ7 becomes 

where 
A*7(r) = AZe^ireor)-1 exp(-qr), (2.21) 

AZ=\ZA-ZB q=zqA = qB. 

I t is evident that for some alloy systems qA cannot be 
taken equal to qB. A few calculations will be reported 
for11 

Ui(i)=* Zie2(4:Treor)~'1(cosplr) exp(—ptr), 

but the detailed calculations in the sequel are for the 
Yukawa potentials with both screening constants set 

equal to q. Substitution of (2.21) into (2.12) yields 

mAmsQ21 
H(W-

where 

Ntt2 / 
J N 

Wk^MttkMr-1 

X exp (—qr) exp (iAk • r)dzr 

Q= AZe2/4weo, A k - k - k r . 

(2.22) 

(2.23) 

The exact forms of uv*(r) and Ut(x) are not known, so 
it is assumed that the product of these two quantities 
can be taken outside the integral and approximated as 
follows 

|^k '*(r)^k(r) |2—C, a const. 

This constant and other parameters appearing in the 
potential will be chosen so that the theoretical resistivity 
curves for the random case are fitted to the experimental 
data. Integration of (2.22) now yields 

#(k,k') = 
2^2Q2CmAmB 

NQ2(q2+Ak2)2 
(2.24) 

If aT does not represent a superlattice, then (2.24) 
can be used for all Ak. I t is shown in Appendix I I that 
(2.24), (2.11), and (2.16) yield for the purely random 
case. 

1 ixe\AZ)2CmAWB f 
—= In 
T 87reo2hzkodtt I 

1+-
4W 

q2+4h 
(2.25) 

In the same Appendix it is shown for the case of general 
order (other than superlattices) that (2.18) gives 

1 ne*(AZ)2CmAinB 

8T€o2h3koztt 
-{GM+Y,'KT)aTF(ko,q,T)} , 

(2.26) 

where r is the magnitude of T, aT is the average of all aT 

over a shell, G(ko,q) is the bracketed portion of (2.25), 
b(r) is the coordination number of the r th shell, and 
F(ko,q,r) is given by 

2A 

(A2 

f sin2£ 

l)3/2j 

3A 1 - j p r m B - ^ Cos£-i2 

AJL 

•fcyt 
B2 LA2-

X s i n £ 2 
\ (BcosB-sinB) 

B B* 

B2 

11 
AEBl+(q*/2ko2), B=k0T. 

(2.27) 

(2.28) 

I t should be noted that only the averages of aT over a 
shell, the aT, are required. More complicated potentials 
may require more information about the aT. 

The resistivity p is related to the relaxation time by 

p^fi/e2rjTy (2.29) 
11 E. C. Mclrvine, J. Phys. Soc. Japan 15, 928 (1960). where rj is the number of conduction electrons per unit 



R E S I D U A L R E S I S T I V I T Y O F D I S O R D E R E D A L L O Y S 1051 

volume. For a face-centered cubic (fee) lattice, one has 
the relation 

iy=4»/ao8, (2.30) 

where n is the electron to atom ratio and a0 is the fee 
cube edge. I t is also noted that for this lattice 

127T% = &0 3 ^ . (2.31) 

Substitution of (2.30), (2.31), and (2.26) into (2.29) 
gives for the residual resistivity of a fee binary alloy 

p—DCao3(AZ)2n~2niAmB 

X{G(k0,q)+Zr i(r)5TF(A0,?,r)} , (2.32) 
where 

Z)=MV/3847r3eo2^3. 

When the ions in the alloy are appreciably different 
in size, the change of the lattice parameter a0 as a func
tion of concentration is taken into account through 
the relation 

do^dAMA+aBnts, (2.33) 

where d is the lattice parameter of the ith component. 
When the ions have different valences, the change in 

the effective number of conduction electrons as a func
tion of concentration is taken into account through the 
relation 

» = VAmA+ VBmB, (2.34) 

where V% is the valence of the ith component. 
I t should be noted that, in the random case, parabolic 

shaped curves are predicted by (2.32) if both ao and n 
(and, therefore, ko) are independent of the concentra
tion. In general, ao and n depend on the concentration 
and vary according to Eqs. (2.33) and (2.34), respec
tively. Consequently, the above theory does not predict 
perfectly parabolic curves even in the random case. 
The theory does, however, predict zero resistivity for 
concentrations of zero and unity. 

3. GENERAL PROBLEMS OF APPLICATIONS 
AND THE NEARLY RANDOM CASE 

The final equation (2.32) for the residual resistivity 
is expressed in terms of the Cowley order parameters, 
which must be supplied theoretically or experimentally 
before the theory can be compared with experiment. A 
quantum theory of the order parameters has been de
veloped by Christy and Hall12 for a theoretical model 
identical to that of this paper. With these two theories 
it is now possible to calculate a theoretical resistivity 
which can be compared directly with experiment. This 
program is in progress but the associated numerical 
calculations have not been completed. In the meantime, 
certain rough checks on the theory of this paper are 
being supplied in this section and Sec. 4. 

I t would be desirable to have measurements of both 
the residual resistivity and several order parameters on 
the same specimen for a range of concentrations. Such 

12 D. O. Christy and G. L. Hall (to be published). 

FIG. 1. Residual electrical 
resistivity (expressed in juQ 
cm) as a function of con
centration for copper-nickel 
alloys. The circles ( • ) in
dicate experimental meas
urements (B. R. Coles, Ref. 
16). The solid curve is 
simply a visual aid. 

data has not been reported. A great deal of work has 
been reported on measurements of residual resistivity 
(usually at concentrations for which perfect super-
lattices can exist at sufficiently low temperatures), but 
the Cowley parameters have not been reported for the 
same specimens. Confronted with this situation, the 
authors have used the order parameters reported by 
Cowley13 as a function of quench temperature for single 
crystals of Cu3Au to calculate a resistivity and com
pared this with the measurements of Damask14 on small 
(0.017-in.-diam) wires. I t was found that the three 
significant figure accuracy to which Cowley's measure
ments were made produced only one significant figure in 
the calculated (change of) resistivity to be compared 
with that of Damask. The possibility of the propagation 
of round-off error raises doubts as to the significance of 
these calculations. Nevertheless, these questionable 
calculated values (for g==2.5) fall on a curve of roughly 
the same magnitude and slope as that of Damask. 

With the preceding limitations in mind, the authors 
concentrate in this section on checking the power of the 
theory to explain nonparabolic curves of resistivity 
versus concentration for the nearly random case. The 
rough checks are to be considered only as illustrations 
of how the theory can be applied. 

Figure 1 is typical of the experimental data found in 
the literature15,16 for resistivity curves for an alloy 
rapidly quenched from a temperature near the melting 
point. After the quenching procedure, the measurement 
of resistivity is frequently performed near room tem
perature where thermal resistivity is not negligible. In 
Fig. 1 it is seen that the resistivity is appreciable at 
concentrations of zero and unity. Furthermore, the 
thermal resistivity is not in general independent of the 
concentration,5 so some method of reducing the data is 
required. The assumption made here is that the thermal 
resistance varies linearly with concentration so that the 
residual resistivity reduces to zero at concentrations 
of zero and unity. The parameters of the potential and 

13 J. M. Cowley, J. Appl. Phys. 21, 24 (1950). 
14 A. C. Damask, J. Phys. Chem. Solids 1, 23 (1956). 
15 V. Johannson and J. O. Linde, Ann. Physik 25, 1 (1936). 
16 B. R. Coles, Proc. Phys. Soc. (London) B65, 221 (1952). 
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FIG. 2. Residual electrical 
resistivity (expressed in /xO 
cm) for copper gold alloys. 
The circles (O) indicate re
duced experimental values 
taken from measurements 
(Johannson and Linde, Ref. 
15) made at 20°C for 
samples quenched from 
650°C. The solid line gives 
the theoretical results. The 
values for the adjustable 
parameters used in the 
theory are FAU = 1.075, Feu 
= 0.925, q = 2 (in Hartree 
units), and C-2.71X10"3. 

and the constant C are chosen to fit the theory to 
experiment by assuming that the rapidly quenched 
alloys are purely random. Figures 2 and 3 demonstrate 
the agreement between experiment and theory for the 
Cu-Au and the Cu-Ni systems, respectively. These two 
particular systems illustrate the necessity of accounting 
for types 1 and 2 (Sec. 1) changes of the Fermi volume 
as a function of concentration. Equations (2.33) and 
(2.34) are used for both systems. Although the assump
tions of pure randomness and linear thermal resistivity 
may not be valid, it is nevertheless demonstrated that 
the theory is capable of explaining nonparabolic curves. 

The adjustable constant C and the parameters of the 
potential thus determined for the purely random case 
were used to investigate the nonrandom (slowly 
annealed) case. Although it was quite easy to pick out 
the fits reported in Figs. 2 and 3 as the best for the 
range of potentials investigated, it must be admitted 
that good fits were obtained for values of q ranging from 
1.0 to 10.0 in Hartree units with large associated varia
tions in C. It was also possible to obtain good fits using 
a potential of the form 

r~l(co$pr) exp(—-^r). 

In view of the apparent arbitrariness in the choice of 
the potential parameters, it was desirable to have an 
independent test of the selections represented by 
Figs. 2 and 3. For the case depicted in Fig. 2, an inde-

FIG. 3. Residual electrical 
resistivity (expressed in fiti 
cm) for copper nickel alloys. 
The circles (O) indicate re
duced experimental values 
(Coles, Ref. 14) taken from 
measurements at 100°C. 
The solid line gives the 
theoretical results. The 
values for the adjustable 
parameters used in theory 
are FNi=0.54, FCu=1.00, 
q = 2 (in Hartree units), and 
C-18.4. 

pendent test has been supplied by unpublished calcula
tions of Christy17 on ordering energy. Christy has found 
several errors in Flinn's6 theory of ordering energy which 
worsen Flinn's reported agreement between experiment 
and theory by a factor of sixteen. When Christy uses 
the parameters of Fig. 2, good agreement between 
experiment and theory is regained for the Cu-Au system. 
Christy's work also confirms some of the work reported 
in the next section. 

4. NONRANDOM CASE. LIMITED APPLICATION 
TO Cu-Au SYSTEM 

Because of a lack of experimental measurements of 
the Cowley order parameters and theoretical knowledge 
of the interrelationships between them, exact compari
son of the above theory to experimental data, such as 
curve B in Fig. 4, is not possible at the present time. 

20 40 60 80 

ot.%Ni 

20 40 60 80 
at. % Au 

FIG. 4. Resistivity (expressed in /xQ cm) as a function of con
centration for copper gold alloys; curve A, quenched from 650°C; 
curve B, annealed at 200°C (i.e., cooled from 400 to 200°C in 
380 h, at 200°C 150 h). (Johannson and Linde, Ref. 15.) 

But if the quickly quenched case (curve A in Fig. 4) is 
assumed to represent a purely random alloy and if the 
annealed case (curve B in Fig. 4) is assumed to represent 
a nonrandom alloy, then it is possible, by the following 
technique, to predict an "average" order parameter ai 
for first neighbors. The technique is as follows: (1) The 
experimental data is reduced as indicated in Sec. 3. 
(2) All aT for second- and higher order neighbors are 
assumed equal to zero. (3) The theoretical resistivity 
[Eq. (2.32)], now a function of «i, is fitted to curve B 
wherever possible without ai exceeding its bounds (Sec. 
2). In the remaining regions of curve B, a\ is taken equal 

17 D. O. Christy (unpublished). 
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to the appropriate bound and curve B is approximated 
as seen in Fig. 5. Figure 6 gives a\ so calculated. 

The portions of curve B not fitted by this first approxi
mation possess a degree of order extending beyond first 
neighbors, but even these rough results suggest that, 
with a few more aT, experiment and theory might agree 
except at concentrations very close to those for which 
perfect supperlattices exist. 

This method of predicting an a\ is very rough, because 
it ignores any interrelationships existing between the 
aT and because the bounds on aT, which are also bounds 
on aT, yield little information about aT. An illustration 
of the latter point is given by the ordered CuAu struc
ture for which it is easy to show that ax equals — | 
whereas the ar for the various first neighbors are 
either + 1 or — 1. 

The predicted d\ of Fig. 6 has been examined by 
Christy to see if the first-neighbor contribution, using 
ah tends to increase the cohesive energy beyond that of 
a purely random alloy. This question is answered in the 
affirmative for all concentration less than 66% Au in Cu. 

Clearly, more experimental measurements of order 
parameters and further knowledge of the interrelation
ships between the ar are needed. 

5. SUMMARY 

A quantum theory of the residual electrical resistivity 
of binary disordered alloys is developed in terms of 
Cowley order parameters and for atomic potentials 
extending outside the unit cell. The theory is valid for 
any degree of order, excepting perfect superlattices. The 
purely random case possesses certain analogies with 
normal processes in thermal resistivity, and the non-
random case with umklapp processes. Fermi volume 
changes with concentration are taken into account; 
indeed, this is the factor that gives the theory the 
flexibility to explain nonparabolic curves of resistivity 
versus concentration in the random case. 

Most of the details of the calculations are presented 
for the particular case in which the two atomic potentials 
are of the Yukawa type. The parameters of the po
tentials and a certain adjustable constant are fixed by 
fitting the theory to the experimental data for quickly 
quenched alloys. In this case the alloys are assumed to 
be purely random, but the fitting procedure can be 
carried out just as well if the Cowley parameters are 
supplied (experimentally) as measures of the deviations 
from purely randomness. With the potentials deter
mined, the data for slowly annealled (nonrandom) alloys 
is investigated. The lack of experimentally measured 
order parameters and the lack of theoretical knowledge 
of all interrelationships between the Cowely parameters 
at the present time limit this investigation, and hence 
prevent a very exacting test of the theory. Nevertheless, 
it is possible to produce a crude predicted value for the 
average of the Cowley parameters for the first neighbors. 
Both the choice of potential and the predicted order 
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FIG. 5. Resistivity (expressed in f& cm) of copper-gold alloys; 
the dashed curve indicates the reduced experimental results for 
the purely random case; the dot-dashed curve indicates the re
duced experimental results for the nonrandom case; and the solid 
curve indicates the theoretical results using only the first neighbor 
order parameter «i. The circles (O) are the points at which 
calculations were made. The values used for the adjustable param
eters are the same as those used for Fig. 2. 

parameter meet checks supplied by independent un
published calculations by Christy on ordering energy. 

It would be very helpful at this stage to have more 
and better experimental data. Measurements of the 
Cowley parameters are needed for stoichiometric ratios 
for which perfect superlattices do not exist. Resistivity 
measurements at temperatures sufficiently low to elimi
nate thermal contributions are also essential. 

With the unpublished theoretical developments of 
Christy and Hall12 mentioned at the beginning of Sec. 3, 
it is now possible to predict order parameters for the 
theoretical model of this paper. This will permit the 
calculation of the residual resistivity which can be 
directly compared with experiment. Associated numeri
cal work is in progress. In this connection it should be 
noted that some care has been taken in Appendix A and 
Sec. 2 to indicate limits of the defining summations for 
the Cowley parameters. The Cowley parameters intro
duced here are not identical to Mattuck's18 version. 

FIG. 6. Behavior of the 
theoretical ai as a function 
of concentration for copper-
gold alloys. The circles (O) 
indicate the points at which 
calculations were made. 

-.8H 

5 R, D. Mattuck,;Phys. Rev. 127, 738 (1962). 
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2. The Cross-Correlation Function The present theory is not valid for perfect super-
lattices and is not a very practical formulation for , 
situations where only a few Cowley parameters differ Equation (A3) is useful m examining the cross corre-
from those for a perfect superlattice. In the latter case, l a t l 0 n of Ul a n d U*' ll f o l l o w s immediately that 
it seems more reasonable to start with the Bloch func
tions for the perfect superlattice (rather than for Ui) I JJI(X)U (x+r)d3x= I U (x)Y\ 

J NO. Ju T 
. - _ , . _ . . . _ . _ _ U2(x+r+^)dsx, 

and to treat the deviation from the superlattice as a J NQ 

perturbation. Such a formulation has been essentially 
completed. New order parameters enter but they are which vanishes by virtue of (A3). If Ui and U2 are 
as susceptible to experimental measurement as are multiplied by a factor periodic with a period of the 
those of Cowley. It is perhaps from this approach that unit cell [say the factor ^k>*(r)#k(r)] the new cross 
data such as that of Damask14 should be analyzed. correlation also vanishes. 
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APPENDIX A 

A few properties of the matrix elements of U2 defined 
in Sec. 2 by 

Jf(k,kO=— f j,k>*(r)U2(t)M*)d3r, (Al) 
NQJNQ 

are presented in this section. 

1. First-Order Perturbation Results 

When k equals k;, Eq. (Al) reduces to 

f \uk(r)\*U2(r)d*r 
J Na 

= L / |«k(r)|2tf,(r)d«r 
r ceil 

N 

kk(r ) ! 2 L^2(r+T)^V=0, (A2) 

because the sum is identically zero. This is shown as 
follows: 

N N oo 

E J7a(r+<0 = £ E CVAtfCr-H-*') 
r T T' 

= £AU(T+*")£:C^T» = 0, (A3) 

where use has been made of the relations, 

N N 

(A4) 

lf(k,k') = (iVO)-1i; 

Thus the first-order perturbation results, which are of 
interest in ordering energy calculations, vanish, 

tCrf . 
T J NQ 

AU(t—x) exp(iAk-r)dV 

^ ( M ^ E E C m f AU(r-n-*) 
n r J Nil 

Xexp(iAk>r)dh, 

where n is defined early in Sec. 2. Periodic boundary 
conditions, 

CT+n=CT y exp(iAk« n) = 1, (A5) 

are now applied to yield 

jlf (k,k') = (Nil)"1 E CT E [ AUir-n-v) 

X exppAk • (r—n)]dV 

N r+cc 

= (iVQ)-1EC ,
r/ AJ7(r-*) 

Xexp(iAk-r)d8r. (A6) 

4. Derivation of Eq. (2.7) 

The modulus squared of the matrix element is given by 

|M(k,k')|2 

= (NQ)~* £ £) CT-CT- [ f AU(z-*')AU(t'—e") 
T' r" J NO J NO, 

X exppAk- ( r ' - z)lflh'dh 

' NQJ NV 

X exp[xAk • (r' - z)]d Vrf3* 
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'(Nty-'ZZCrCr+r 

X E E / exp^Ak-rWV 
n n'J j V O - z - n 

XI MJ(z)AU(r+z-t)dh 
J 2VQ—T'—n' 

FIG. 8. A set of spheri
cal triangles on the sur
face of a unit sphere 
showing the relative di
rections between^ the 
unit vectors k, k', r, 
and 1 

NntAWlB N 

= sr aT 

(M2)2 r 

exp(iAk- x)dzr / &U(i)MJ(r+z)d*z (A7) 
-OO J — Q O 

NniAniB N 

• Z ) «T A£/(r) exp(iAk«r)d3r , (A8) 
(M2)2 

where the Cowley order parameter aT is defined by 

JV 

« r = S Cr'Cr+r'/NniAniB. 

Therefore, (Bl) may be written 

1 nQ2Cm<AfnB 

r2r (1 — cos#— tana sin# cos$) 

sinddd 

(A9) where 

X 
'o [l-cos6l+g2(2^o2)-1]2 

cos/3/coso:= cos^+tana sin# cos$. 

- ^ , (B2) 

Use of the definition given by (2.9) leads to Eq. (2.7). 

APPENDIX B 

1. Integration of Eq. (2.16) for the 
Yukawa Potential 

Substitution of (2.24) and (2.11) into (2.16) yields 

1 4jjLQ2CntAniB 

T hsm 
where 

(22+A£2)~ 1 — 
k'-8" 

k-sJ 
\dS', (Bl) 

| k ' | = * 0 . 

Integration of (B2) yields (2.25). 

2. Integration of Eq. (2.20) for the 
Yukawa Potential 

Consider the evaluation of 

(/(k)k
/,T))av^(47r^o2)-1 [j(k,k',x)dS. (B3) 

Substitution of (2.24) and (2.11) into (B3) yield 

< / ( k , k » ) a v 

= [TrQ2CmAmB e x p ( - i k ' . <z)K"]/NWk^, (B4) 
From Fig. 7, which is a spherical triangle determined by 
k, k', and z, it is seen that 

Ak2=\k-kf\2=2h2(l-cos6), 

k-z = ko cosa, 

k'-z=ko cos/3, 

dS'=k0
2smdded(l>. 

where 

K=ko~2 exp(ik"z)(A-k4')-2dS, 

A^l+~ 

(BS) 

FIG. 7. Spherical 
triangle on the sur
face of a unit sphere 
showing the relative 
directions between 
the unit vectors k, 
k'y and | . 

From Fig. 8, which is a set of spherical triangles deter
mined by k, k', T, and z} it is seen that 

k'x—B cosu, 

k'"v = B cosz), 

k'-k—cosO—cosu cosv-j-sinu sinu cos© , 

where B equals kor and where © is the angle between 
the plane formed by T and k and the plane formed by 
t and k'. I t follows that 

dS=ko2 sinudud®. 

With the change of variable 

£=COSZ> , 
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(B5) may be written in the form Equation (2.20) can now be written as 

v f+1 ,.„ , , 4r^CmAmBA 
K= exp(iBx)dx / ( , ) = [ / I ( - « ) - J J ( T ) ] , (BIO) 

i X [A-xcosv-(l-x2)ll2$mvcos®Jd®. (B6) 

A702^o4(^2-1)3 / 2 

where 

7i(T) = R e | [^Li-\-iL2cosv+Lzcos2v2 

The © integration can be evaluated by making the 
change of variable Xexp(-*i3 cosv)dS | , (Bl l ) 

z=expi®, 

and using residue theory, hence it follows that 72(V) = Rej / [Li+£L 2 cosv+Lz cos2^]| 
2irA 

K= 

cosp 

Lcoso;-

G 4 2 - l ) 3 ' 2 Xexp(-iBcosv)dS'\ , (B12) 

r+l dS' = k0
2smvdvd®. 

X / [ l + ( ^ 2 - l ) - 1 ( x 2 - 2 ^ x c o s ^ + c o s 2 ^ ) ] - 3 / 2 

r cosz; ~i 
X 1 x \exp(iBx)dx. (B7) 

The evaluation of (Bl l ) is straightforward; the result is 

J iO) = 47rko2{L1
2+L2B~2(sinB--B cosB) 

+LlB-ismB+2B-*(BcosB-smBn}. (B13) 
For the values of A (i.e., q and ko) of interest m this 

^42_j!\\i In order to evaluate (B12), the ratio of the cos/3 to the 
cosa must be expressed in terms of v and ©. By use of 

therefore, the terms identities from spherical trigonometry it is found that 

x2/(A2-l) and c o s V ( , 4 2 - l ) cos/5/cosa 

= coswcosH-sinwsimj cos®—tana siny sim; sin© 
are neglected, and the denominator m (B7) is expanded. , ^ f . . ~. ,_ . AS 
XT i A.' i , , n r , , , \c4.u- • + tana cosy (sm^cosz>—smu cos©). (B14) 
Neglecting all but the first two terms of this expansion, fK J v J 

one can write (B5) as follows: 
Substitution of (B14) into (B12) and evaluation of the 

t M-i © integration yields 
i T - 2 7 r ^ ( ^ 2 - l ) - 3 / 2 / exp(iBx)dx 

+ i2A>+l)(A'-Ayr cos, f * e x p ( ^ * W-WfX*{£ (L*+iL*+L*) 

X e x p ( ~ i ^ ) ^ [ , (B15) 

— 3(A2—1)_1 cosz; / #2 exp(i£#)dx} . (B8) where 
J-i } / ^ cosw+tana cosy sinw. 

Integration yields 

K-toAW-iyKLi+il* cosv+L3 cos*,), (B9) I n t e g l ' a t i ° n ° f ( B 1 5 ) y i d d S 

where 7 ^ = °- <B 1 6) 

Xjrsjg-i sin^B Substitution of (B16) and (B13) into (BIO) gives the 
r—(nA2\i\(Az A\T>-2( - R m value of (2.20) for the Yukawa potential. 
L2- {2A +1){A ~A)B (sini* 3 cosi*j , ^ m t e (Med {n ^ ^ Jt h a g b e e n g t a t e d b y s Q m e ^ 
Z,3= — 3(A2—l)~1£B-1smB+2B~2(B cosB—sin!?)]. in comparing experiment and theory, the present 

authors should have selected "better" low-temperature 
Substitution of (B9) into (B4) gives (/(k,k/,T))av. data which contains little thermal resistivity. A number 
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of works have been cited as qualifying in this respect. 
It would require a lengthy discussion to explain why 
each of the suggested works on the Cu-Au system has 
been rejected, but one example may help. The sug
gested data of Pasaglia and Love [Phys. Rev. 98, 1006 
(1955)] for the rapidly quenched Cu-Au system ap
pears to exhibit a nonrandom character for 50-50 
concentrations. Further, they do not report measure
ments on the pure metals for their sample sizes and 
histories. 

INTRODUCTION 

THE study of the cupric salts provides one of the 
most convenient experimental tests for the 

theories of interacting paramagnetic ions. The Cu4-1" 
ion has a spin S=J, value for which the largest amount 
of theoretical work has been done. Moreover, the rela
tively small value of the magnetocrystalline anisotropy 
simplifies comparisons between experiments and theory. 

Very little is known about the magnetic properties 
of cupric nitrate trihydrate, which is one of the most 
common cupric salts. The magnetic susceptibility has 
been measured1 only above 78°K. The paramagnetic 
resonance has been observed at room temperature on 
the powder.2 

We have measured the susceptibility of this salt in 
both powder and single crystal forms, in the liquid 
helium and in the liquid-hydrogen ranges of tempera
ture. The measurements on the powder have been 
extended down to 0.4°K, using a He3 cryostat. 

DESCRIPTION OF THE SAMPLES 

The salt obtained above 26°C by cooling a saturated 
solution of cupric nitrate in water is usually referred to 

* Work supported in part by the Office of Naval Research, and 
the National Science Foundation. 

1F. Escoffier and J. Gauthier, Compt. Rend. 252, 271 (1961). 
2 Z. Miduno, O. Matumura, K. Hukuda, K. Horai, Mem. Fac. 

Sci., Kyusyu Univ. Ser. B 2, 13 (1956). 

More complicated systems pose a problem of the 
determination of the effective number of conduction 
electrons as a function of concentration. Nevertheless, 
with A. H. Wilson's suggestion of 0.3-0.6 for the effec
tive valence of Pd and with the use of Eq. (2.34), it is 
possible to obtain a good theoretical fit to the low-
temperature data of Schindler, Smith, and Salkovitz 
[J. Phys. Chem. Solids 1, 39 (1956)] for the Ni-Pd 
system. The values of the other parameters required are: 
FNi=2.0, q= 1.5-2.0, C= 1.83X10"2, and AZ= 18. 

as the trihydrate3 Cu(N03)2*3H20. According to 
Schreinemakers, Berkhoff, and Posthumus,4 and also 
to Wilcox and Bailey,5 this salt is rather Cu(N03)2 
•2.5H20. In a short note6 on the x-ray determination 
of the structure, Dornberger-Schiff and Leciejewicz 
give a projection of the electron density on a plane 
perpendicular to the monoclinic axis, from which one 
may infer that the formula is Cu(N03)2*2.5H20. 

The material used in the present investigations was 
obtained from the J. T. Baker Chemical Company, in 
the "Baker Analyzed Reagent" grade. All samples were 
recrystallized, by cooling a saturated solution down to 
40 or 30°C, in order to insure the proper degree of 
hydration. Solutions of cupric nitrate should not be 
heated to more than 70°C, as a white powder precipi
tates slowly above this temperature. Care should also 
be exercised to prevent organic materials from coming 
into contact with this strongly oxidizing salt. Sheets of 
filter paper catch fire spontaneously when soaked with 

3 J. W. Mellor, A Comprehensive Treatise on Inorganic and 
Theoretical Chemistry (Longmans Green and Company, Ltd., 
London, 1923), Vol. 3, p. 280. 

4 F. A. H. Schreinemakers, G. Berkhoff, and K. Posthumus, Rec. 
Trav. Chim. 43, 508 (1924). 

5 K. W. Wilcox and C. R. Bailey, J. Chem. Soc. (London) 150 
(1927). 

6 K. Dornberger-Schiff and J. Leciejewicz, Acta Cryst. 11, 825 
(1958). According to a private communication from these authors, 
the formula Cu(N03)2l.5H20 given in their note should read 
Cu(N03)22.5H20. 
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The magnetic susceptibility of cupric nitrate "trihydrate" Cu(N03)2-2.5H20 has been measured on the 
powder and on single crystals in the 14-20 and 0.4-4.2°K ranges of temperature. The susceptibility of the 
powder has a rounded maximum at 3.2°K, where it is equal to 0.065 cgs/mole, and drops very rapidly 
towards zero below this temperature. This behavior differs from that of a typical antiferromagnet. The 
experimental data have been compared with existing theoretical calculations for antiferromagnetic linear 
chains or binary clusters. In the single crystal, the susceptibility measured in a direction parallel to the 
monoclinic axis is always larger by 20% than the susceptibility in the perpendicular directions. This is 
probably due to a uniaxial anisotropy of the g factor. 


